

 Owner:
 Steinsteypan

 No.:
 MD-24119-EN

 Issued:
 05-02-2025

 Valid to:
 05-02-2030

3rd PARTY **VERIFIED**

EPD

VERIFIED ENVIRONMENTAL PRODUCT DECLARATION | ISO 14025 & EN 15804

Owner of declaration

Steinsteypan, Koparhella 1, 221 Hafnarfirði, Iceland

STEINSTEYPAN

VAT number: 521223-0300

Programme

EPD Danmark www.epddanmark.dk

☐ Industry EPD☒ Product EPD

Declared product(s)

Declared product is $1~{\rm m}^3$ of plastic concrete for construction in class C35. Number of declared datasets/product variations: 1

Production site

Steinsteypan, Koparhella 1, 221 Hafnarfirði, Iceland

Use of Guarantees of Origin

- ☐ Electricity covered by GoO
- ☐ Biogas covered by GoO

Declared/ functional unit

Declared unit is 1 m³ of C35 concrete.

Year of production site data (A3)

November 2022-October 2023.

EPD version

1, 02-01-2025.

Issued: 05-02-2025

Valid to: 05-02-2030

Basis of calculation

This EPD is developed and verified in accordance with the European standard EN 15804+A2.

Comparability

EPDs of construction products may not be comparable if they do not comply with the requirements in EN 15804. EPD data may not be comparable if the datasets used are not developed in accordance with EN 15804 and if the background systems are not based on the same database.

Validity

This EPD has been verified in accordance with ISO 14025 and is valid for 5 years from the date of issue.

Use

The intended use of an EPD is to communicate scientifically based environmental information for construction products, for the purpose of assessing the environmental performance of buildings.

EPD type

- □Cradle-to-gate with modules C1-C4 and D
- □Cradle-to-gate with options, modules C1-C4 and D
- □Cradle-to-gate
- □Cradle-to-gate with options

CEN standard EN 15804 serves as the core PCR

Independent verification of the declaration and data, according to EN ISO 14025

 \square internal

 $\ \boxtimes \ external$

enver

Third party verifier:

Mirko Miseljic

Martha Katrine Sørensen EPD Danmark

Life	Life cycle stages and modules (MND = module not declared)															
	Product Construction process				Use					End of life			Beyond the system boundary			
Raw material supply	Transport	Manufacturing	Transport	Installation process	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Re-use, recovery and recycling potential
A1	A2	А3	A4	A5	B1	B2	В3	B4	В5	В6	В7	C1	C2	C3	C4	D
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X

Product information

Product description

The product from Steinsteypan is plastic concrete used for construction. This EPD covers the declared unit of 1 $\rm m^3$ of concrete with characteristic strength classes of C35 as specified in ÍST EN 206. The main product components are shown in the table below.

Material	Weight-% of declared product
Cement, CEM I, 52.5,5N	17%
Sand	6%
Water	16%
Air entraining agent	60%
Lava granulate	0%
Superplasticizer	0%
Total	100%

Raw material and Product packaging:

No packaging of raw material is used. No packaging for the product is used since it is transported directly in a truck mixer.

Representativity

This declaration, including data collection and the modeled foreground system including results, represents the production of concrete on the production site located Steinsteypan located in Iceland. Product specific data are based on average values collected in the period November 2022-October 2023. Background data are based on GaBi and Ecoinvent databases and are less than 10 years old. Generally, the used background datasets are of high quality, and the majority of the datasets are only a couple of years old.

Hazardous substances

C35 does not contain substances listed on the "Candidate List of Substances of Very High Concern for authorisation"

(http://echa.europa.eu/candidate-list-table)

Product(s) use

Plastic concrete is used for many different construction aspects, including basic foundations, exterior surfaces, superstructures, floor construction, wastewater treatment facilities, and parking lots/structures. It serves as a fundamental building material in these applications.

Essential characteristics

C35 is covered by the harmonized technical specification ÍST EN 206. Declaration of performance according to EU regulation 305/2011 is available for all declared product variations. The cement has a strength class of C35 and an exposure class of XC2. It contains a mix proportion binder of cement class I 52.5.

Further technical information can be obtained by contacting the manufacturer or on the manufacturers website: <u>Steinsteypan</u>

Reference Service Life (RSL)

The reference service life (RSL) is 100 years according to Annex AA in DS/EN 16757:2022 Sustainability of construction works – Environmental product declarations – Product Category Rules for concrete and concrete elements.

Picture of product

LCA background

Declared unit

The LCI and LCIA results in this EPD relates to the declared unit 1 $\rm m^3$ concrete, see the Table below with indication of average density per product type and a conversion from $\rm m^3$ to kg.

Name	Value	Unit
Declared unit	1	m³
Density	2,292.10	kg/m³
Conversion factor to 1 kg.	0.00044	m³/kg

Functional unit

Not defined.

PCR

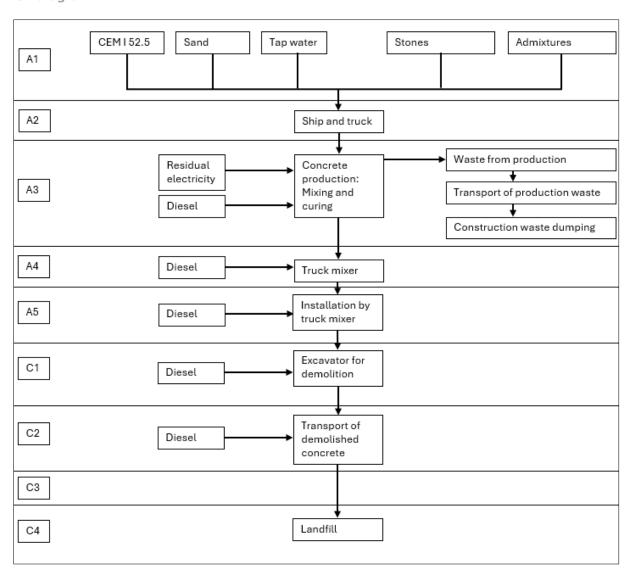
This EPD is developed according to the core rules for the product category of construction products in EN 15804+A2:2019, and DS/EN 16757:2022 - Sustainability of construction

works – Environmental product declarations – Product Category Rules for concrete and concrete elements

Energy modelling principles

Foreground system:

The product is produced using residual grid mix from Iceland and diesel for the production of the concrete.


Background system:

For the background system, the upstream and downstream processes energy consumption are modelled using fuel input as of RER: Diesel mix at filling station Sphera and electricity input used is grid mix of medium voltage.

Flowdiagram

System boundary

This EPD is based on a cradle-to-grave LCA and covers the life cycle sub modules A1-A3, B1-B7, C1-C4 and D, in which 100 weight-% has been accounted for.

The general rules for the exclusion of inputs and outputs follows the requirements in EN 15804+A2:2019, 6.3.5, where the total of neglected input flows per module shall be a maximum of 5 % of energy usage and mass and 1 % of energy usage and mass for unit processes.

Product stage (A1-A3) includes:

- A1 Extraction and processing of raw materials
- A2 Transport to the production site
- A3 Manufacturing processes

The product stage comprises the acquisition of all raw materials, products and energy, transport to the production site, packaging and waste processing up to the" end-of-waste" state or final disposal.

The concrete manufacturing process takes place at the Steinsteypan site. First the raw materials are batched, which means the measurement of the aggregates, cement and water necessary for preparing the specific grade of concrete. When the raw materials have been batched, they are mixed together, to produce a uniform concrete.

The electricity, water, and heat are based on a one-year cycle. The inputs are then divided by the total production output at the production site for one year to allocate the energy consumption to the declared unit (DU) based on m³ produced.

Construction process stage (A4-A5) includes:

The product is assumed to be applied in Iceland. An average distance of 30 km is given by Steinsteypan. A truck mixer is used for the transport of concrete. The diesel consumption is given by Steinsteypan. It is calculated that 2.32 kg of diesel is used to transport 1 m³ of concrete 30 km. This is 20% more diesel input that a typical truck consumes for the same mass kilometer in GaBi. The truck mixer has the purpose of mixing the concrete and loading the concrete for installation which is processes contained in Module A5. The additional 20% diesel input is therefore allocated to A5 for the installation of the concrete.

Use stage (B1-B7) includes:

As there is no maintenance, repair, refurbishment or any operational water or energy consumption related to the use the product during their reference service life, all modules in the use stage (B1-B7) are considered to have no environmental impact. Carbonation in B1 of concrete where CO2 in the ambient air penetrates the concrete is not relevant for the Steinsteypan concrete. The carbonation is 0 because the concrete is covered under layers that are closing it off from ambient air such as lays of insulation material, tiles, parquet and laminate. When the concrete is covered by layers like these, there is no contact with ambient air and thereby no carbonation and thereby no CO₂-uptake. The method of assessing the carbonation of the concrete is based on the DS/EN 16757 Annex G.

End of Life (C1-C4) includes:

Module C1 accounts for the environmental impacts associated with dismantling and demolition of the facade boards. Fuel used for demolition equipment and transport on site vehicles. Demolition requires 3.75 kg of Diesel from a 150-kW excavator.

The average distance to waste handling facilities is 60 km. The truck type for all product types is the GLO: Truck, Euro 6 A-C, 28 - 32t gross weight.

Module C3 – The concrete product is sent to landfill and therefore there is no environmental impacts associated with waste processing of materials flows intended for reuse, recycling or energy recovery.

100% of the product is sent to landfill. This is based on information given by Steinsteypan. According to Steinsteypan and LCA building expert in COWI Iceland it is standard practice to be sending building materials to landfill in Iceland. As the waste scenario described above is based on the currently available information, the scenarios are currently in use and are representative for one of the most likely scenario alternatives.

Re-use, recovery and recycling potential (D) includes: No parts of the product are sent to recycling and there has been no product packaging. There is therefore no material recycling or energy recovery by incineration.

LCA results

				ENVI	RONME	NTAL IM	IPACTS	PER m ³				
Indicato r	Unit	A1	A2	А3	A4	A5	B1-B7	C1	C2	СЗ	C4	D
GWP-total	kg CO₂ eq.	3.06E+02	2.17E+01	4.71E+00	7.17E+00	1.69E+00	0.00E+00	4.72E-01	1.43E+01	0.00E+00	3.45E+01	0.00E+00
GWP- fossil	kg CO₂ eq.	3.06E+02	2.16E+01	4.64E+00	7.05E+00	1.66E+00	0.00E+00	4.36E-01	1.41E+01	0.00E+00	3.43E+01	0.00E+00
GWP- biogenic	kg CO₂ eq.	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
GWP-Iuluc	kg CO₂ eq.	1.06E-01	7.48E-02	6.99E-02	1.16E-01	2.73E-02	0.00E+00	3.63E-02	2.31E-01	0.00E+00	2.06E-01	0.00E+00
ODP	kg CFC 11 eq.	2.39E-06	1.96E-12	7.91E-08	1.01E-12	2.39E-13	0.00E+00	3.18E-13	2.03E-12	0.00E+00	9.26E-11	0.00E+00
AP	mol H ⁺ eq.	4.94E-01	3.25E-01	1.58E-02	1.03E-02	2.44E-03	0.00E+00	1.87E-03	2.07E-02	0.00E+00	2.44E-01	0.00E+00
EP- freshwate r	kg P eq.	6.15E-03	2.34E-05	1.10E-03	2.94E-05	6.93E-06	0.00E+00	9.22E-06	5.88E-05	0.00E+00	7.80E-05	0.00E+00
EP-marine	kg N eq.	1.22E-01	1.37E-01	3.94E-03	3.88E-03	9.17E-04	0.00E+00	5.45E-04	7.77E-03	0.00E+00	6.27E-02	0.00E+00
EP- terrestrial	mol N eq.	1.46E+00	1.50E+00	4.25E-02	4.58E-02	1.08E-02	0.00E+00	6.67E-03	9.17E-02	0.00E+00	6.91E-01	0.00E+00
POCP	kg NMVOC eq.	3.77E-01	3.76E-01	1.25E-02	1.03E-02	2.42E-03	0.00E+00	1.91E-03	2.05E-02	0.00E+00	1.92E-01	0.00E+00
ADPm ¹	kg Sb eq.	2.56E-04	7.59E-07	4.69E-06	5.99E-07	1.41E-07	0.00E+00	1.88E-07	1.20E-06	0.00E+00	2.22E-06	0.00E+00
ADPf ¹	MJ	8.43E+02	2.59E+02	1.23E+02	9.06E+01	2.14E+01	0.00E+00	2.84E+01	1.81E+02	0.00E+00	4.52E+02	0.00E+00
WDP ¹	m ³ world eq. deprived	4.00E+03	9.94E-02	1.66E+00	1.07E-01	2.51E-02	0.00E+00	3.34E-02	2.13E-01	0.00E+00	3.93E+00	0.00E+00
Caption	GWP-total = Global Warming Potential - total; GWP-fossil = Global Warming Potential - fossil fuels; GWP-biogenic = Global Warming Potential - biogenic; GWP-luluc = Global Warming Potential - land use and land use change; ODP = Ozone Depletion; AP =								AP = phication -			
Disclaimer	¹ The	results of t	his environr	mental indic			care as the		ies on these	e results are	high or as	there is

			ADDIT	IONAL	ENVIRO	NMENT	AL IMP	ACTS P	ER m³			
Parameter	Unit	A1	A2	А3	A4	A5	B1-B7	C1	C2	СЗ	C4	D
PM	[Disease incidence]	4.14E-06	8.50E-06	1.08E-07	9.97E-08	2.35E-08	0.00E+00	2.28E-08	1.99E-07	0.00E+00	3.06E-06	0.00E+00
IRP ²	[kBq U235 eq.]	1.38E+00	4.73E-02	1.33E+00	2.39E-02	5.65E-03	0.00E+00	7.52E-03	4.79E-02	0.00E+00	5.50E-01	0.00E+00
ETP-fw ¹	[CTUe]	5.14E+03	1.92E+02	4.37E+01	6.73E+01	1.59E+01	0.00E+00	2.11E+01	1.35E+02	0.00E+00	2.61E+02	0.00E+00
HTP-c ¹	[CTUh]	1.31E-07	3.56E-09	1.56E-09	1.36E-09	3.21E-10	0.00E+00	4.26E-10	2.72E-09	0.00E+00	6.16E-09	0.00E+00
HTP-nc ¹	[CTUh]	3.94E-07	1.25E-07	6.18E-08	6.10E-08	1.44E-08	0.00E+00	1.91E-08	1.22E-07	0.00E+00	2.38E-07	0.00E+00
SQP ¹	-	5.55E+02	2.93E+01	3.70E+01	4.46E+01	1.05E+01	0.00E+00	1.40E+01	8.92E+01	0.00E+00	1.25E+02	0.00E+00
Caption	PM = Part						man health xicity – non					= Human
	¹ The res	sults of this	environme	ental indicat			care as the I with the ir		es on these	e results are	e high or as	there is
Disclaimers					he eventua	al impact of	low dose id	onizing radi				
Discidifficis	cycle. It do											disposal in
	unaergi	round facili	ties. Potent	iai ionizing			l, from rado this indicat		i some con	struction m	iaterials is a	aiso not

					RESO	URCE US	SE PER r	n³				
Parameter	Unit	A1	A2	А3	A4	A 5	B1	C1	C2	С3	C4	D
PERE	[MJ]	3.16E+02	6.01E+00	9.79E+00	7.80E+00	1.84E+00	0.00E+00	2.45E+00	1.56E+01	0.00E+00	7.90E+01	0.00E+00
PERM	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERT	[MJ]	3.16E+02	6.01E+00	9.79E+00	7.80E+00	1.84E+00	0.00E+00	2.45E+00	1.56E+01	0.00E+00	7.90E+01	0.00E+00
PENRE	[MJ]	8.39E+02	2.59E+02	1.23E+02	9.06E+01	2.14E+01	0.00E+00	2.84E+01	1.81E+02	0.00E+00	4.52E+02	0.00E+00
PENRM	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT	[MJ]	8.39E+02	2.59E+02	1.23E+02	9.06E+01	2.14E+01	0.00E+00	2.84E+01	1.81E+02	0.00E+00	4.52E+02	0.00E+00
SM	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FW	[m³]	2.83E+00	3.37E-04	1.32E-04	8.69E-03	2.05E-03	0.00E+00	2.73E-03	1.74E-02	0.00E+00	1.20E-01	0.00E+00
Caption	reso m	Use of renources; PEN aterials; PE	ewable prir IRE = Use (ENRM = Us	nary energ of non rene e of non re ly resource	y resources wable prim newable pr s; SM = Us	s used as ra nary energy imary ener se of second	wable prima aw material excluding gy resource dary materi ry fuels; FV	s; PERT = non renew es used as ial; RSF = I	Total use o able primar raw materi Jse of rene	f renewable y energy rals; PENRT wable seco	e primary e esources us = Total us	energy sed as raw e of non

			WAS	TE CATE	GORIES	AND OU	TPUT FL	OWS PE	R m³			
Parameter	Unit	A1	A2	А3	A4	A5	B1-B7	C1	C2	С3	C4	D
HWD	[kg]	5.93E-01	8.50E-09	2.89E-09	3.47E-09	8.19E-10	0.00E+00	1.09E-09	6.94E-09	0.00E+00	1.13E-07	0.00E+00
NHWD	[kg]	2.44E+00	2.88E-02	2.29E+01	1.48E-02	3.49E-03	0.00E+00	4.65E-03	2.96E-02	0.00E+00	2.29E+03	0.00E+00
RWD	[kg]	1.18E-03	3.37E-04	1.32E-04	1.65E-04	3.90E-05	0.00E+00	5.18E-05	3.30E-04	0.00E+00	4.75E-03	0.00E+00
CRU	[kg]	9.34E-05	2.82E-04	1.31E-04	1.64E-04	3.86E-05	0.00E+00	5.14E-05	3.27E-04	0.00E+00	4.71E-03	0.00E+00
MFR	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
MER	[kg]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
EEE	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
EET	[MJ]	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Caption		Hazardous ents for re			s for recycl	ling; MER =		for energy				,

	BIOGENIC CARBON CONTENT PER m ³								
Parameter	Unit	At the factory gate							
Biogenic carbon content in product	kg C	0							
Biogenic carbon content in accompanying packaging	kg C	0							

Additional information

LCA interpretation

It has been found that 1 m^3 of C35 has an emission of 391.02 kg CO_2/m^3 . The climate impact of the C35 is similar to the impact of average C35 concrete in the market.

The results show that the input of cement has the largest contribution to most of the impact categories. Cement accounts for approximately 72% of the contribution to climate change and is the main contributor to 8 of the impact categories.

Technical information on scenarios

Transport to the building site (A4)

Scenario information	Value	Unit
Fuel type	RER: Diesel mix at filling station Sphera	=
Vehicle type	A2: GLO: Truck, Euro 6 A-C, 28 - 32t gross weight / 22t payload capacity Sphera <u- so></u- 	-
Transport distance	30	km
Capacity utilisation (including empty runs)	61	%
Gross density of products transported	2,292,10	kg/m³
Capacity utilisation volume factor	1	-

Installation of the product in the building (A5)

instantation of the product in the building (A5)		
Scenario information	Value	Unit
Ancillary materials		kg
Water use		m ³
Other resource use		kg
Energy type and consumption: RER: Diesel mix at filling station	0.46	kg
Waste materials		kg
Output materials		kg
Direct emissions to air, soil or water		kg

Reference service life

RSL information		Unit
Reference service Life	100	Years
Declared product properties	Declared by the producer	As appropriate
Design application parameters	See DS/EN 16757:2022	As appropriate
Assumed quality of work	See DS/EN 16757:2022	As appropriate
Outdoor environment	Yes	As appropriate
Indoor environment	See DS/EN 16757:2022	As appropriate
Usage conditions	See DS/EN 16757:2022	As appropriate
Maintenance	no	As appropriate

Use (B1-B7)

Scenario information	Value	Unit
B1 – Use		
B2 - Maintenance		
Maintenance process	Description or reference	-
Maintenance cycle		/year
Ancillary materials for maintenance (specify which)		kg/cycle
Waste materials resulting from maintenance (specify which)		kg
Net freshwater consumption during maintenance		m ³
Energy input during maintenance		kWh
B3 – Repair		
Repair process	Description or reference	-
Inspection process	Description or reference	-
Repair cycle		/year
Ancillary materials (specify which)		kg/cycle
Waste materials (specify which)		kg
Net freshwater consumption during repair		m ³
Energy input during repair		kg/cycle
B4 – Replacement		
Replacement cycle		/year
Energy input during replacement		kWh
Exchange of worn parts during products life cycle		kg
B5 - Refurbishment		
Refurbishment process		
Refurbishment cycle		/year
Energy input during refurbishment		kWh
Material input for refurbishment (specify which)		kg/cycle
Waste materials resulting from refurbishment		kg
Further assumptions for scenario development		As appropriate
B6 + B7 – Use of energy and water		
Ancillary materials specified by material		kg
Net freshwater consumption		m³
Type of energy carrier		kWh
Power output of equipment		kW
Characteristic performance		As appropriate
Further assumptions for scenario development		As appropriate

End of life (C1-C4)

and of me (er er)		
Scenario information	Value	Unit
Collected separately		kg
Collected with mixed waste		kg
For reuse		kg
For recycling		kg
For energy recovery		kg
For final disposal	2,292,10	kg
Assumptions for scenario development		As appropriate

Re-use, recovery and recycling potential (D)

Scenario information/Materiel	Value	Unit
Displaced material		kg
Energy recovery from waste incineration		MJ

Indoor air

The EPD does not give information on release of dangerous substances to indoor air because the horizontal standards on the relevant measurements are not available. Read more in EN15804+A1 chapter 7.4.1.

Soil and water

The EPD does not give information on release of dangerous substances to soil and water because the horizontal standards on the relevant measurements are not available. Read more in EN15804+A1 chapter 7.4.2.

References

Publisher	L epddanmark
	www.epddanmark.dk Template version 2024.1
Programme operator	Danish Technological Institute Gregersensvej DK-2630 Taastrup www.teknologisk.dk
LCA-practitioner	Cecilie Holm Arentoft COWI A/S Parallelvej 2 2800 Kgs. Lyngby
LCA software /background data	GaBi Sphera Professional 2024 Ecoinvent 3.10 EN 15804 reference package 3.1
3 rd party verifier	Mirko Miseljic LCA Specialists Denmark Icaspecialists@outlook.com

General programme instructions

General Programme Instructions, version 2.0, spring 2020 www.epddanmark.dk

EN 15804

DS/EN 15804 + A2:2019 - "Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products"

Product-specific cPCR

DS/EN 16757:2022 Bæredygtighed inden for byggeri og anlæg – Miljøvaredeklarationer – Produktkategoriregler for beton og betonelementer

EN 15942

DS/EN 15942:2011 – " Sustainability of construction works – Environmental product declarations – Communication format business-to-business"

ISO 14025

DS/EN ISO 14025:2010 – " Environmental labels and declarations – Type III environmental declarations – Principles and procedures"

ISO 14040

DS/EN ISO 14040:2008 – " Environmental management – Life cycle assessment – Principles and framework"

ISO 14044

DS/EN ISO 14044:2008 – " Environmental management – Life cycle assessment – Requirements and guidelines"