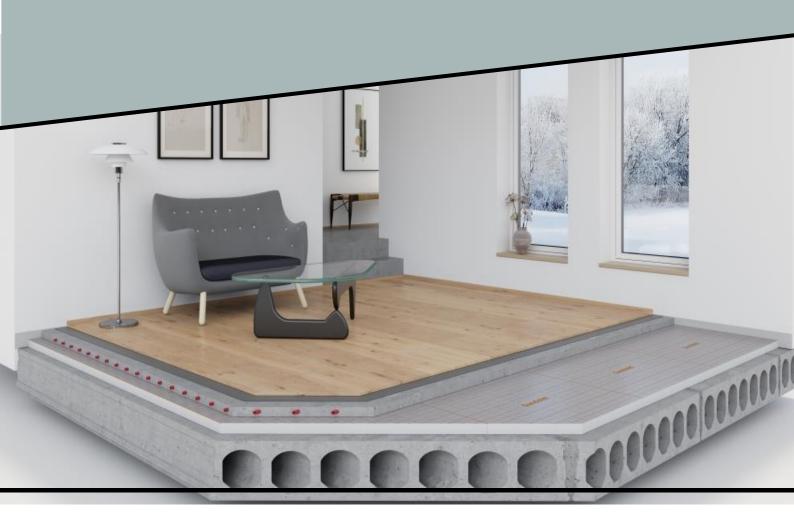


 Owner:
 Sunde AS (NO

 No.:
 MD-24174-EN

EPD tool: Sunde EPD Tool (Tool ID: T24003)

 Tool version:
 Version 1


 Issued:
 11/26/2024

 Valid to:
 11/26/2029

3rd PARTY **VERIFIED**

EPD

VERIFIED ENVIRONMENTAL PRODUCT DECLARATION | ISO 14025 & EN 15804

Owner of declaration

Sunde AS (NO)

Borgundfjordveien 118, N-6017 Ålesund NO 916 416 784 MVA

Program

EPD Danmark www.epddanmark.dk

- Product EPD
- □ Project EPD
- □ Industri EPD

Declared product:

Sundolitt Trinnlydplate

Number of declared datasets/product variations: [1] The EPD covers a specific product and is a specific EPD.

Production site

Bergen, Norway: Idrettsvegen 119, N-5353 Straume.

No use of green energy certificates. Residual mix is used.

Product(s) use

Expanded polystyrene (EPS) insulation is used for heat insulation in buildings. EPS has a very long service life, excellent insulation properties, low moisture absorption and high compressive stress.

Declared unit

 $1\ m^2$ of insulation material with thickness corresponding to R-value = $1m^2K/W$ within an expected service life for insulation materials.

Year of energy data (A3)

2022

Year of production site data (A3)

2024

Declaration developed using [Sunde EPD Tool, Tool ID: T24003, Version 1, Developed by COWI A/S]

Data collection, processing and registration done by: Frank Wilhelmsen Reviewed by: Lars Valentin

☑ internal □ external

Reviewer (internal control):

[Lars Valentin]

Issued:

Valid to:

11/26/2024

11/26/2029

Basis of calculation

This EPD is developed in accordance with the European standard EN 15804+A2.

Comparability

EPDs of construction products may not be comparable if they do not comply with the requirements in EN 15804. EPD data may not be comparable if the datasets used are not developed in accordance with EN 15804 and if the background systems are not based on the same database.

Validity

This EPD has been verified in accordance with ISO 14025 and is valid for 5 years from the date of issue.

Use

The intended use of an EPD is to communicate scientifically based environmental information for construction products, for the purpose of assessing the environmental performance of buildings.

EPD type

□Cradle-to-gate with modules C1-C4 and D

□Cradle-to-grave and module D

☐Cradle-to-gate

□Cradle-to-gate with options

CEN standard EN 15804 serves as the core PCR

Independent verification of the tool on which declaration and data is based, according to EN ISO 14025:2010

□ internal

Third party verifier:

David Althoff Palm

Martha Katrine Sørensen EPD Danmark

Lif	е сус	cle s	stag	jes ar	nd modu	les (M	IND =	mod	ule n	ot ded	clared)					
	Product Construction process							End of life				Beyond the system boundary					
Raw material	supply		Manufacturing	Transport	Installation process	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Re-use, recovery and recycling potential
A1	. A2	2 /	A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
X	Х		X	Х	Х	MND	MND	MND	MND	MND	MND	MND	X	X	X	X	X

			Ту	kkelse m	m			
	41 20 25 30 35 40							
Sundolitt Trinnlydplate	1,00	0,57	0,68	0,78	0,89	0,99	1,20	

Product information

Product description

The main product components are shown in the tables below.

Material	Weight-% of declared product
White polystyrene beads from recycled PS	0 %
White polystyrene beads, primary material	85 %
Geotextile	0 %
PP plastic	15 %
Fiber cement boards	0 %
Total weight of product	100 %

Product packaging

The composition of the sales- and transport packaging of the product is shown in the table below.

Material	Weight-% of packaging
Cardboard	0 %
LDPE foil	100 %
Wooden pallet	0 %
Plastic pallet	0 %
EPS bars	0 %
Tape (PE)	0 %
Label	0 %
Sheets PE	0 %
Sum	100 %

Representativity

This declaration, including data collection and the modelled foreground system including results, represents the production of Sundolitt Trinnlydplate on the production site located in Norway. Product specific data are based on average values collected in the period 2024. Background data are based on GaBi Professional 2023 and Ecoinvent 3.9 and are less than 5 years old. Generally, the used background datasets are of high quality, and the majority of the datasets are only a couple of years old.

Hazardous substances

Sundolitt Trinnlydplate do not contain substances listed in the "Candidate List of Substances of Very High Concern for authorization"

(http://echa.europa.eu/candidate-list-table). Absence of these substances is declared by Sunde AS (NO). The products do not contain any fire retardants.

Essential characteristics (CE)

EPS is a common plastic foam insulation for building structures. EPS contains 98% air, resulting in a product with low weight, high compressive stress, and good insulating properties. EPS primarily consists of polystyrene. The density of EPS can be adjusted, and the compressive stress of the product increases with an increasing density. The specific density of this product can be found in the section "Declared unit".

Sundolitt Trinnlydplate (step sound board) is made from expanded polystyrene (EPS) and is commonly used in floor construction to reduce step sound. The product provides dynamic stiffness which provides a good basis for reduction of step sounds. The declared products are covered by harmonized technical specification NS-EN13163.

This LCA is based on Sundolitt Trinnlydplate with theoretical thickness of 41 mm and R-value 1. A conversion factor for standard thicknesses can be found under System boundaries.

Further technical information can be obtained by contacting Manufacture or on their website:

https://www.sundolitt.no

Reference Service Life (RSL)

The reference service life of insulation products varies depending on where in the building the products are used. The service life tables from BUILD (BUILD) can be used to determine the reference service life of insulation products in various building contexts.

Picture of product

LCA background

Declared unit

The LCI and LCIA results in this EPD relates to 1 m^2 of insulation material with thickness corresponding to R-value = $1m^2K/W$ within an expected service life for insolation materials.

Name	Value
Declared unit	1 m² of insulation material with thickness corresponding to R-value = 1m²K/W
Density [kg/m³ insulation material]	13,00
Thickness [mm]	41
Weight [kg/DU]	0,62
Conversion factor to 1 kg.	1,613

Functional unit

Not defined.

PCR

This EPD is developed according to the core rules for the product category of construction products in EN 15804+A2 and the complementary Product Category Rules (c-PCR) EN 16783:2024.

Guarantee of Origin - certificates

Foreground system:

The product is produced using green energy certificates from:

No use of green energy certificates. Residual mix is used.

The electricity is used for the manufacturing at the production site. No other energy processed are included in the foreground.

Background system:

Both upstream processes are modelled using residual mix. Downstream processes are modelled using grid mix.

System boundaries

This EPD is based on a cradle-to-gate with options LCA, in which 100 weight-% has been accounted for.

The general rules for the exclusion of inputs and outputs follows the requirements in EN 15804, 6.3.5, where the total of neglected input flows per

module shall be a maximum of 5% of energy usage and mass and 1% of energy usage and mass for unit processes. No known flows are emitted according to the EN15804 cut of criteria.

Product stage (A1-A3) includes:

A1 – Extraction and processing of raw materials

A2 - Transport to the production site

A3 - Manufacturing processes

The product stage comprises the acquisition of all raw materials, products and energy, transport to the production site, packaging, and waste processing up to the "end-of-waste" state or final disposal.

EPS is manufactured by using steam, making the polystyrene beads expand due to the release of pentane. The size of the beads is controlled and relates to the density of the end-product.

No solid waste is generated from the production of EPS products, as waste is immediately returned to production line. However, some solid waste is produced from the raw material packaging, e.g., cardboard.

The pentane content in the EPS products is highest right after production, where after it continues to decrease. After approximately one month almost all the pentane has been emitted from the products. The release of pentane is reported in module A3 since it relates to the production.

Trinnlyd boards is produced by mechanically compressing the EPS boards to create the necessary dynamic stiffness to achieve the sound properties. For the Trinnlyd boards PP fabric is put on the one side that faces upwords when installed. The fabric is delivered ready to use and is joined with the insulation material in A3.

Construction stage (A4-A5) includes:

The Sundolitt Trinnlydplate is transported 505 km with a Medium truck (max 115 m³, max 32 ton) to the construction site.

The transport of Packaging waste is transported 60 km with a Diesel truck, with a payload of max 32 ton, euronorm 6 (GLO).

End of Life (C1-C4) includes:

The Sundolitt Trinnlydplate product is dismantled manually, thus, no environmental impacts are associated with module C1. In both scenario 1 and scenario 2, the dismantled product is transported 60 km to a waste handling facility by a EURO 6 diesel truck.

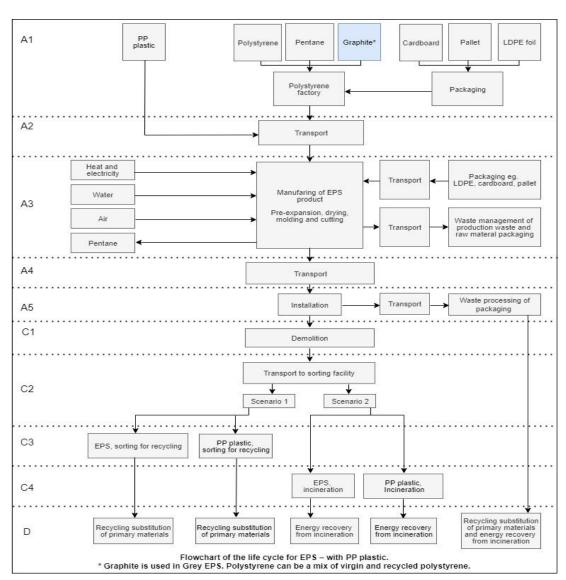
In scenario 1, the dismantled insulation material reaches its end-of-waste stage at the recycling and sorting facility and it is therefore no longer viewed as waste. Material credits for recycling of polystyrene is included in module D. In scenario 2, incineration of the dismantled insulation product is included in module C4. Energy credits related to energy recovery from the incineration is included in module D.

In scenario 1, the PP plastic parts are sent to recycling and given material credits related to this

in module D. In scenario 2, the PP plastic parts are sent to incineration and given energy credits in module D according to this.

Re-use, recovery and recycling potential (D) includes:

In Scenario 1, material credits related to recycling of polystyrene are included in module D.


Material credits related to recycling of PP plastic are included in module D.

In Scenario 2, energy credits related to incineration of polystyrene are included in module

Energy credits related to incineration of PP plastic are included in module D.

The packaging materials reach the end-of-waste stage in module A5, and the benefits from recycling and incineration of the packaging materials are included in module D.

Flowdiagram

LCA results

	ENVIRONMENTAL IMPACTS PER 1 m ² of insulation material with thickness corresponding to R-value = 1m ² K/W													
										Scenario 1	ı		Scenario 2	
Parameter	Unit	A1	A2	А3	A4	A5	C1	C2	СЗ	C4	D	СЗ	C4	D
GWP-total	kg CO2-eq.	1,31E+00	3,18E-02	2,24E-01	2,09E-03	1,28E-02	0,00E+00	2,46E-04	5,46E-03	0,00E+00	-1,26E+00	0,00E+00	2,07E+00	-7,76E-01
GWP-fossil	kg CO2-eq.	1,31E+00	3,15E-02	2,24E-01	2,07E-03	1,28E-02	0,00E+00	2,43E-04	5,46E-03	0,00E+00	-1,26E+00	0,00E+00	2,07E+00	-7,76E-01
GWP- biogenic	kg CO2-eq.	0,00E+00	0,00E+00	-1,43E-05	0,00E+00	1,43E-05	0,00E+00	0,00E+00	0,00E+00	0,00E+00	-1,11E-05	0,00E+00	0,00E+00	-1,11E-05
GWP-luluc	kg CO2-eq.	1,13E-04	2,87E-04	1,63E-05	1,89E-05	7,31E-07	0,00E+00	2,22E-06	1,31E-09	0,00E+00	-9,11E-05	0,00E+00	1,90E-06	-8,93E-05
ODP	kg CFC11- eq.	1,34E-09	4,03E-15	1,17E-09	2,65E-16	2,49E-15	0,00E+00	3,12E-17	8,38E-21	0,00E+00	-2,59E-12	0,00E+00	9,17E-14	-6,18E-12
AP	kg H+eq.	2,10E-03	3,94E-05	3,72E-04	3,01E-06	1,65E-06	0,00E+00	3,53E-07	1,26E-18	0,00E+00	-1,79E-03	0,00E+00	1,83E-04	-1,54E-03
EP- freshwater	kg P-eq.	2,90E-05	1,13E-07	1,76E-05	7,46E-09	8,71E-10	0,00E+00	8,76E-10	1,64E-12	0,00E+00	-1,79E-06	0,00E+00	2,18E-08	-3,46E-06
EP-marine	kg N-eq.	5,65E-04	1,32E-05	1,12E-04	1,09E-06	4,54E-07	0,00E+00	1,28E-07	1,37E-13	0,00E+00	-5,09E-04	0,00E+00	3,98E-05	-4,30E-04
EP- terrestrial	kg N-eq.	6,04E-03	1,60E-04	1,16E-03	1,29E-05	7,55E-06	0,00E+00	1,52E-06	2,78E-09	0,00E+00	-5,47E-03	0,00E+00	8,65E-04	-4,45E-03
POCP	kg NMVOC- eq	2,17E-03	3,37E-05	2,23E-02	2,63E-06	1,29E-06	0,00E+00	3,09E-07	1,48E-08	0,00E+00	-1,92E-03	0,00E+00	1,18E-04	-1,13E-03
ADPm1	kg Sb-eq	1,74E-07	2,04E-09	6,53E-08	1,34E-10	2,58E-11	0,00E+00	1,58E-11	3,32E-13	0,00E+00	-4,72E-08	0,00E+00	8,55E-10	-6,98E-08
ADPf1	MJ	4,61E+01	4,22E-01	3,74E+00	2,78E-02	6,44E-03	0,00E+00	3,26E-03	4,44E-11	0,00E+00	-4,45E+01	0,00E+00	2,31E-01	- 1,19E+01
WDP1	m3	1,42E-01	3,74E-04	3,54E-02	2,46E-05	1,21E-03	0,00E+00	2,89E-06	1,18E-04	0,00E+00	-8,53E-02	0,00E+00	1,71E-01	-1,17E-01
Caption	GWP-total = Globale Warming Potential - total; GWP-fossil = Global Warming Potential - fossil fuels; GWP-biogenic = Global Warming Potential - biogenic; GWP-luluc = Global Warming Potential - land use and land use change; ODP = Ozone Depletion; AP = Acidification; EP-freshwater = Eutrophication - aquatic freshwater; EP-marine = Eutrophication - aquatic marine; EP-terrestrial = Eutrophication - terrestrial; POCP = Photochemical zone formation; ADPm = Abiotic Depletion Potential - minerals and metals; ADPf = Abiotic Depletion Potential - fossil fuels; WDP = Water Depletion Potential													
	The numbers are declared in scientific notation, e.g., 1.95E+02. This number can also be written as: 1.95*102 or 195, while 1.12E-11 is the same as 1.12*10-11 or 0.000000000112.													
Disclaimer	¹ The res	ults of this e	nvironment	al indicator	shall be use	ed with care	as the unce indica		these resu	lts are high	or as there	is limited ex	perienced w	ith the

										Scenario 1			Scenario 2		
Unit	A1	A2	А3	A4	A5	C1	C2	С3	C4	D	С3	C4	D		
Disease incidence	1,39E-08	2,99E- 10	3,16E-09	2,59E- 11	1,99E- 11	0,00E+00	3,04E- 12	0,00E+00	0,00E+00	-1,16E-08	0,00E+00	1,06E- 09	-1,25E-08		
kBq U235 eq.	3,64E-02	1,18E- 04	2,02E-02	7,78E- 06	2,82E- 05	0,00E+00	9,14E- 07	1,19E-13	0,00E+00	-2,22E-02	0,00E+00	2,24E- 03	-1,84E-01		
CTUe	2,43E+01	2,99E- 01	2,62E+00	1,97E- 02	3,99E- 03	0,00E+00	2,32E- 03	7,83E-05	0,00E+00	- 2,44E+01	0,00E+00	1,05E- 01	- 4,37E+00		
CTUh	5,10E-10	6,13E- 12	7,18E-11	4,04E- 13	2,07E- 13	0,00E+00	4,74E- 14	8,03E-14	0,00E+00	-5,20E-10	0,00E+00	1,18E- 11	-1,61E-10		
CTUh	2,15E-08	3,27E- 10	2,49E-09	2,15E- 11	1,95E- 11	0,00E+00	2,53E- 12	4,68E-22	0,00E+00	-2,18E-08	0,00E+00	3,57E- 10	-6,23E-09		
-	1,32E+00	1,76E- 01	2,40E-01	1,16E- 02	1,67E- 03	0,00E+00	1,36E- 03	4,99E-12	0,00E+00	- 1,01E+00	0,00E+00	7,27E- 02	- 1,24E+01		
	Ca	ancer eff	ects; HTP-r	nc = Hur	nan toxi	city – non d	ancer et	ffects; SQP	= Soil Qua	lity (dimen	sionless)		,		
The numbers are declared in scientific notation, e.g., 1.95E+02. This number can also be written as: 1.95*102 or 195, while 1.12E-11 is the same as 1.12*10-11 or 0.0000000000112.									12E-11 is						
¹ The results of this environmental indicator shall be used with care as the uncertainties on these results are high or as there is limite experienced with the indicator.									limited						
F	cricidence (Bq U235 eq. CTUe CTUh CTUh - PM = Partic The numbe 1 The res	1,39E-08 1,39E-08 1,39E-08 1,39E-08 1,39E-08 1,39E-08 1,39E-01 1,39E-01	1,39E-08	1,39E-08 10 3,16E-09 10 2,02E-02 1,18E-	1,39E-08 10 3,16E-09 11	1,39E-08 10 3,16E-09 11 11 11 11 11 11 11	1,39E-08 10 3,16E-09 11 11 0,00E+00	1,39E-08 10 3,16E-09 11 11 11 0,00E+00 12	CTUh 2,43E+01 2,99E-	CTUh S,10E-10 1,76E-	CTUh 2,43E+01 2,99E 10 2,49E-01 1,16E 13 13 0,00E+00 12 0,00E+00 0,00E+00 -1,16E-08 0,00E+00 0,00E+00 -2,22E-02 0,00E+00 0,00E+00 -2,24E+01 0,00E+00 -2,24E+01 0,00E+00 -2,24E+01 0,00E+00 -2,22E-02 0,00E+00 -2,24E+01 0,00E+00 -2,22E-02 0,00E+00 -2,24E+01 0,00E+00 -2,22E-02 0,00E+00 -2,24E+01 0,00E+00 0,00E+00	CTUh S,10E-10 1,76E-08 3,27E- 10 2,49E-01 1,16E- 10 1,16E- 10	CTUh S,10E-10 1,3E-08 10 1,76E-09 11 11 11 0,00E+00 12 0,00E+00 0,00E+00 -1,16E-08 0,00E+00 0,00E+00		

RESO	URCI	E USE P	ER 1 m	of ins	ulation	materi	al with	thickne	ss corre	espondi	ng to R	-value	= 1m ² K	/W
									5	Scenario :	l	:	Scenario 2	2
Paramete r	Uni t	A1	A2	А3	A4	A5	C1	C2	СЗ	C4	D	СЗ	C4	D
PERE	МЈ	1,35E+0 0	3,07E-02	1,46E-01	2,02E-03	1,42E-03	0,00E+0 0	2,37E-04	8,24E-04	0,00E+0 0	- 1,38E+0 0	0,00E+0 0	5,87E-02	7,55E+0 0
PERM	MJ	1,53E-01	0,00E+0 0	-1,53E- 01	0,00E+0 0	-1,71E- 04	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0
PERT	МЈ	1,51E+0 0	3,07E-02	-7,15E- 03	2,02E-03	1,24E-03	0,00E+0 0	2,37E-04	8,24E-04	0,00E+0 0	1,38E+0 0	0,00E+0 0	5,87E-02	7,55E+0 0
PENRE	МЈ	4,62E+0 1	4,23E-01	3,74E+0 0	2,79E-02	6,44E-03	0,00E+0 0	3,28E-03	3,06E-03	0,00E+0 0	- 4,45E+0 1	0,00E+0 0	2,31E-01	1,19E+0 1
PENRM	МЈ	2,36E+0 1	0,00E+0 0	2,57E-01	0,00E+0 0	-2,94E- 01	0,00E+0 0	0,00E+0 0	- 2,36E+0 1	0,00E+0 0	0,00E+0 0	0,00E+0 0	- 2,36E+0 1	0,00E+0 0
PENRT	МЈ	6,98E+0 1	4,23E-01	4,00E+0 0	2,79E-02	-2,87E- 01	0,00E+0 0	3,28E-03	- 2,36E+0 1	0,00E+0 0	- 4,45E+0 1	0,00E+0 0	- 2,34E+0 1	1,19E+0 1
SM	kg	7,80E-03	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0
RSF	MJ	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0
NRSF	MJ	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0
FW	m3	7,40E-03	3,36E-05	2,72E-03	2,21E-06	2,88E-05	0,00E+0 0	2,60E-07	0,00E+0 0	0,00E+0 0	-6,30E- 03	0,00E+0 0	4,00E-03	-4,58E- 03
Caption	PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources; PENRE = Use of non renewable primary energy excluding non renewable primary energy resources used as raw materials; PENRM = Use of non renewable primary energy excluding non renewable primary energy resources used as raw materials; PENRM = Use of non renewable primary energy													

The numbers are declared in scientific notation, e.g., 1.95E+02. This number can also be written as: 1.95*102 or 195, while 1.12E-11 is the same as 1.12*10-11 or 0.000000000112.

										Scenario 1	L	Scenario 2		
Paramete r	Uni t	A1	A2	А3	A4	A5	C1	C2	СЗ	C4	D	СЗ	C4	D
HWD	kg	2,93E-09	1,31E-12	5,21E-11	8,63E-14	4,75E-14	0,00E+0 0	1,01E-14	0,00E+0 0	0,00E+0 0	-3,07E- 09	0,00E+0 0	5,20E-12	-4,97E 10
NHWD	kg	1,03E-02	6,45E-05	2,74E-03	4,25E-06	1,15E-03	0,00E+0 0	4,99E-07	7,12E-17	0,00E+0 0	-1,09E- 02	0,00E+0 0	7,57E-03	-2,28E- 02
RWD	kg	1,65E-04	7,92E-07	8,32E-06	5,22E-08	2,04E-07	0,00E+0 0	6,13E-09	5,28E-09	0,00E+0 0	-1,78E- 04	0,00E+0 0	1,39E-05	-1,11E- 03
CRU	kg	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+ 0									
MFR	kg	0,00E+0 0	0,00E+0 0	6,66E-03	0,00E+0 0	1,98E-03	0,00E+0 0	0,00E+0 0	6,20E-01	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+ 0
MER	kg	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+ 0									
EEE	МЈ	0,00E+0 0	0,00E+0 0	2,32E-02	0,00E+0 0	2,31E-02	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	3,81E+0 0	0,00E+ 0
EET	МЈ	0,00E+0 0	0,00E+0 0	4,18E-02	0,00E+0 0	4,13E-02	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	0,00E+0 0	6,79E+0 0	0,00E+ 0
Caption	HWD = Hazardous waste disposed; NHWD = Non hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EET = Exported thermal energy													

	BIOGENIC CARBON CONTENT PER 1 m ² of insulation material with thickness corresponding to R-value = 1m ² K/W									
Parameter	Unit	At the factory gate								
Biogenic carbon content in product	kg C	0,00E+00								
Biogenic carbon content in accompanying packagaing	kg C	3,90E-06								
Note: 1 kg biogenic carbon is equivalent to 44/12 kg of CO2										

Additional information

LCA interpretation

The raw material, polystyrene and the energy consumtion related to the A3 production is the main contributor to the environmental impacts. However, for scenario two where the EPS is sent for incineration, this contributes most to the impact category GWP-total. For both scenarios, module A1 account for the maximum contribution to the majority of the 19 impact categories.

Technical information on scenarios

Transport to the building site (A4)

Scenario information	Value	Unit
A4 Transport Type, 1st means of transport	Medium truck (max 115 m³, max 32 ton)	-
Transport Distance, 1st means of transport	505	km
Capacity utilisation, 1st means of transport	5	%
A4 Transport Type, 2nd means of transport	-	-
Transport Distance, 2nd means of transport	-	km
Capacity utilisation, 2nd means of transport	-	%
Gross density of products transported (incl. packaging)	0,6	kg/DU

Installation of the product in the building (A5)

Scenario information	Value	Unit
Ancillary materials	-	kg
Water use	-	m3
Other resources use	-	kg
Energy type and consumption	-	kWh
Waste handling of packaging	0,01	kg
Direct emissions to air, soil or water	-	kg

End of life (C1-C4)

Processes	Scenario 1	Scenario 2
Collected separately [kg]	-	-
Collected with mixed waste [kg]	-	-
For reuse [kg]	-	-
For recycling [kg]	0,6	-
For energy recovery from incineration [kg]	0	0,6
For final disposal, fiber cement [kg]		
Assumptions for scenario development	See scenario descriptions.	See scenario descriptions.

Re-use, recovery and recycling potential (D)

no use, receivery una recycling potential (2)				
Processes	Scenario 1	Scenario 2	Unit	
Recycling from A5 [kg]	0,00	0,00	kg	
Energy recovery from A5 [MJ]	0,06	0,06	MJ	
Recycling from C3 [kg]	0,62	-	kg	
Energy recovery from C4 [MJ]	0,00	10,60	MJ	

Indoor air

The EPD does not give information on release of dangerous substances to indoor air because the horizontal standards on the relevant measurements are not available. Read more in EN15804+A2 chapter 7.4.1.

Soil and water

The EPD does not give information on release of dangerous substances to soil and water because the horizontal standards on the relevant measurements are not available. Read more in EN15804+A2 chapter 7.4.2.

Terereres

Version 2.0 www.epddanmark.dk

EN 15804

DS/EN 15804 + A2:2019 - "Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products"

GaBi software and database

GaBi Professional Database version 2023.1

Ecoinvent Database

Ecoinvent version 3.9.1

EN 16783:2024

EN 16783:2024 – "Thermal insulation products – Product category rules (PCR) for factory made and in-situ formed products for preparing environmental product declarations"

EN 15942

DS/EN 15942:2011 – " Sustainability of construction works – Environmental product declarations – Communication format business-to-business"

ISO 14025

DS/EN ISO 14025:2010 – " Environmental labels and declarations – Type III environmental declarations – Principles and procedures"

ISO 14040

DS/EN ISO 14040:2008 – " Environmental management – Life cycle assessment – Principles and framework"

ISO 14044

DS/EN ISO 14044:2008 – " Environmental management – Life cycle assessment – Requirements and quidelines"

Publisher		L epddanmark
		www.epddanmark.dk
Programme operator		Danish Technological Institute Buildings & Environment Gregersensvej DK-2630 Taastrup www.teknologisk.dk
	LCA-report author	Rikke Zuwa Kempf Bernberg COWI A/S Parallelvej 2 2800 Kgs. Lyngby Denmark
LCA tool	Tool developer	Rikke Zuwa Kempf Bernberg, Johanna Hyveled Jakobsen and Cecilie Holm Arentoft COWI A/S Parallelvej 2 2800 Kgs. Lyngby Denmark
	LCA software /backgrounddata	GaBi Professional 2023.1 and Ecoinvent v3.9.1
	3rd party verifier	David Althoff Palm Dalemarken AB Beryllvägen 25 442 60 Kode Sweden