This appendix refers to the EPD MD-23167-EN, developed according to EN15804+A2:2019.
Results in the appendix communicates LCA results in the format described in EN15804+A1:2013, in order to accommodate a need in the transition period between the two standard revisions. The appendix cannot stand alone, as the reference EPD describes the basis of the assessment.

ENVIRONMENTAL IMPACTS PER $1 \mathrm{~m}^{\mathbf{2}}$ MicroShade®																
Parameter	Unit	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
GWP	[$\mathrm{kg} \mathrm{CO}_{2}$-eq.]	1,17E+01	ND													
ODP	[kg CFC11-eq.]	8,36E-06	ND													
AP	[$\mathrm{kg} \mathrm{SO}_{2}$-eq.]	4,02E-02	ND													
EP	[$\mathrm{kg} \mathrm{PO}_{4}{ }^{3-}$-eq.]	2,61E-02	ND													
POCP	[kg ethene-eq.]	4,15E-03	ND													
ADPE	[kg Sb-eq.]	2,76E-04	ND													
ADPF	[MJ]	1,58E+02	ND													
Caption	GWP = Global warming potential; ODP = Ozone depletion potential; AP = Acidification potential of soil and water; EP = Eutrophication potential; POCP = Photochemical ozone creation potential; ADPE = Abiotic depletion potential for non fossil resources; ADPF = Abiotic depletion potential for fossil resources															
	The numbers are declared in scientific notation, $\mathrm{fx} 1,95 \mathrm{E}+02$. This number can also be written as: $1,95^{*} 10^{2}$ or 195 , while $1,12 \mathrm{E}-11$ is the same as $1,12^{*} 10^{-11}$ or 0,0000000000112 .															

RESOURCE USE PER $1 \mathbf{m}^{\mathbf{2}}$ MicroShade®																
Parameter	Unit	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
PERE	[MJ]	$4,63 \mathrm{E}+01$	ND													
PERM	[MJ]	0,00E+00	ND													
PERT	[MJ]	$4,63 \mathrm{E}+01$	ND													
PENRE	[MJ]	$2,21 \mathrm{E}+02$	ND													
PENRM	[MJ]	0,00E+00	ND													
PENRT	[MJ]	$2,21 \mathrm{E}+02$	ND													
SM	[kg]	$1,17 \mathrm{E}-01$	ND													
RSF	[MJ]	6,45E-02	ND													
NRSF	[MJ]	0,00E+00	ND													
FW	[m^{3}]	$1,21 \mathrm{E}-01$	ND													
Caption	PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy excluding non renewable primary energy resources used as raw materials; PENRM = Use of non renewable primary energy resources used as raw materials; PENRT = Total use of non renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non renewable secondary fuels; FW = Use of net fresh water															
	The numbers are declared in scientific notation, fx $1,95 \mathrm{E}+02$. This number can also be written as: $1,95^{\star} 10^{2}$ or 195 , while $1,12 \mathrm{E}-11$ is the same as $1,12^{\star} 10^{-11}$ or 0,0000000000112 .															

WASTE CATEGORIES AND OUTPUT FLOWS PER $1 \mathbf{m} 2$ MicroShade®																
Parameter	Unit	A1-A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
HWD	[kg]	5,86E-01	ND													
NHWD	[kg]	1,13E+01	ND													
RWD	[kg]	8,30E-04	ND													
CRU	[kg]	0,00E+00	ND													
MFR	[kg]	$1,11 \mathrm{E}-02$	ND													
MER	[kg]	3,68E-04	ND													
EEE	[MJ]	6,74E-02	ND													
EET	[MJ]	1,61E-01	ND													
Caption	HWD = Hazardous waste disposed; NHWD = Non hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EET = Exported thermal energy															

Checked and approved by

